
The Genesis of JAVA

• Java is related to C++, which is a direct
descendent of C.

• From C, Java derives its syntax.

• Java was conceived by James Gosling, Patrick
Naughton, Chris Warth, Ed Frank, and Mike
Sheridan at Sun Microsystems, Inc. in 1991.

• This language was initially called “Oak” but
was renamed “Java”in 1995.

• primary motivation the need for a platform-
independent language Web, too, demanded
portable programs.

• By 1993, the focus of Java switch from
consumer electronics to Internet
programming.

• Architecture-Neutral Programming language.

• Computer languages evolve for two reasons:

 to adapt to changes in environment

 to implement advances in the art of

programming.

• Java

– Environmental change  platform-independent
programs

– Advances in programming  enhancement of
object-oriented paradigm used by C++.

• Java  Internet Programming

• C  systems programming

Java Applets and Applications
• Java can be used to create two types of

programs: applications and applets.

• An application is a program that runs on your
computer, under the operating system of that
computer.

• An applet is an application designed to be
transmitted over the Internet and executed by
a Java-compatible Web browser.

• An applet is an intelligent program, that can
react to user input and dynamically change.

Java’s Magic: The Bytecode
• The output of a Java compiler is not executable code.

Rather, it is bytecode.

• Bytecode is a highly optimized set of instructions
designed to be executed by the Java run-time system,
which is called the Java Virtual Machine (JVM).

• JVM is an interpreter for bytecode.

• Translating a Java program into bytecode helps makes it
much easier to run a program in a wide variety of
environments, only the JVM needs to be implemented
for each platform.

• Sun supplies its Just In Time (JIT) compiler for bytecode,
which is a part of JVM. It compiles bytecode into
executable code in realtime, on a piece-by-piece,
demand basis.

The Java Buzzwords
■ Simple
■ Secure
■ Portable
■ Object-oriented
■ Robust  checks code at compile time & run time.
■ Multithreaded
■ Architecture-neutral  “write once; run anywhere, any

time, forever.”
■ Interpreted
■ High performance  perform well on low power CPUs.
■ Distributedhandles TCP/IP protocols; Java-RMI package

-client/server programming
■ Dynamic

JAVA OVERVIEW

• Object-Oriented Programming
– All Java programs are object oriented.

• Two Paradigms
– all computer programs consist of two elements:

• Code  ‘what is happening’

• Data  ‘who is being affected’

– Process-oriented model
• Code acting on data

– Object-oriented model
• Data controlling access to data

• Abstraction

– An essential element of object-oriented
programming is abstraction.

– A powerful way to manage abstraction is through
the use of hierarchical classifications.

– This allows you to layer the semantics of complex
systems, breaking them into more manageable
pieces.

– The data from a traditional process-oriented
program can be transformed by abstraction into
its component objects.

The Three OOP Principles
• Encapsulation

– Mechanism that binds together code and the data it
manipulates, and keeps both safe from outside
interference and misuse.

– In Java the basis of encapsulation is the class.

– Each method or variable in a class may be marked
private or public.

– The public interface of a class represents everything
that external users of the class need to know, or may
know.

– The private methods and data can only be accessed
by code that is a member of the class.

• Inheritance

– Inheritance is the process by which one object
acquires the properties of another object.

– It supports the concept of hierarchical classification.

– By use of inheritance, an object need only define
those qualities that make it unique within its class.

– It can inherit its general attributes from its parent.

• Polymorphism

– It is a feature that allows one interface to be used for
a general class of actions.

– “one interface, multiple methods.”

– reduce complexity

– same interface to be used to specify a general class
of action.

– It is the compiler’s job to select the specific action
(that is, method) as it applies to each situation.

Introduction to Java Programming
First Simple Program

Entering the Program

• In Java, a source file is officially called a
compilation unit.

• The java compiler requires that a source file
use the .java filename extension.

• In Java, all code must reside inside a class and
the name of that class should match the name
of the file that holds the program.

• Java is case-sensitive

• Example.java

/*

This is a simple Java program.

Call this file "Example.java".

*/

class Example {

// Your program begins with a call to main().

public static void main(String args[]) {

System.out.println("This is a simple Java
program.");

}

}

• public static void main(String args[]){

All Java applications begin execution by calling
main()

The public keyword is an access specifier,
which allows the programmer to control the
visibility of class members.

main() must be declared as public, since it
must be called by code outside of its class
when the program is started.

The keyword static allows main() to be called
without having to instantiate a particular
instance of the class.

This is necessary since main() is called by the
Java interpreter before any objects are made.

The keyword void tells the compiler that main()
does not return a value.

In main(), there is only one parameter.

String args[] declares a parameter named args,
which is an array of instances of the class String.

Objects of type String store character strings.

args receives any command-line arguments
present, when the program is executed.

A complex program will have dozens of classes,
anyone of which will need to have main()
method to get things started.

The next line of code is,

• System.out.println(“This is a simple Java program”);

Output is accomplished by the built-in println()
method.

println() displays the string which is passed to
it.

System is a predefined class that provides
access to the system.

out is the output stream that is connected to
the console.

All statements in Java end with a semicolon.

The first } ends the main() and the last } ends
the class definition.

• Compiling the Program

C:\>javac Example.java

• The javac compiler creates a file called
Example.class that contains the bytecode
version of the program.

• To actually run the program, you must use the
Java interpreter, called java.

C:\>java Example

Output:

This is a simple Java program.

Example2.java.
/*

Here is another short example.
Call this file "Example2.java".

*/
class Example2 {

public static void main(String args[]) {
int num; // this declares a variable called num
num = 100; // this assigns num the value 100
System.out.println("This is num: " + num);
num = num * 2;
System.out.print("The value of num * 2 is ");
System.out.println(num);

}
}

Two Control Statements

• The if Statement

if(condition) statement;

• If condition is true, then the statement is
executed. If condition is false, then the statement
is bypassed.

Operator Meaning

< Less than

> Greater than

== Equal to

IfSample.java
class IfSample {

public static void main(String args[]) {
int x, y;
x = 10;
y = 20;
if(x < y)

System.out.println("x is less than y");
else

System.out.println(“y is less than x");

x = x * 2;
if(x == y)
System.out.println("x now equal to y");
x = x * 2;
if(x > y)
System.out.println("x now greater than y");
// this won't display anything
if(x == y)
System.out.println("you won't see this");

}
}

• The for Loop

for(initialization; condition; iteration)

statement;

class ForTest {

public static void main(String args[]) {

int x;

for(x = 1; x<=10; x ++)

System.out.println("This is x: " + x);

}

}

• Using Blocks of Code

– Java allows two or more statements to be grouped
into blocks of code, also called code blocks.

– This is done by enclosing the statements between
opening and closing curly braces.

if(x < y) { // begin a block

x = y;

y = 0;

} // end of block

• BlockTest.java
Class BlockTest {

public static void main(String args[]) {
int x, y;
y = 20;
// the target of this loop is a block
for(x = 0; x<10; x++) {

System.out.println("This is x: " + x);
System.out.println("This is y: " + y);
y = y - 2;

}
}

}

Data Types, Variables, and Arrays

• Data Types

– Java is a strongly typed language.

– Every variable has a type, every expression has a
type, and every type is strictly defined.

– The Java compiler checks all expressions and
parameters to ensure that the types are
compatible.

– Any type mismatches are errors.

(in C/C++ you can assign a floating-point value
to an integer. In Java, you cannot.)

The Simple Types

• Java defines eight simple (or elemental) types
of data:

– byte, short, int, long, char, float, double, and
boolean.

• 4 Groups

– Integers  includes byte, short, int, and long

– Floating-point numbers  includes float and
double

– Characters  includes char

– Boolean  includes boolean

• Integers
– byte – signed 8-bit type

– short – signed 16-bit type

– int – signed 32-bit type

– long – signed 64-bit type

• Floating-Point types
– float – single-precision value, 32 bits of storage

– double – double precision, 64 bits of storage

• Characters
– 16-bit type (In C/C++  8 bits)

– Java uses Unicode to represent characters.

• Boolean
– logical values; true or false

Variables

• The variable is the basic unit of storage in a
Java program.

• All variables have a scope, which defines their
visibility, and a lifetime.

• Declaring a Variable

type identifier [= value][, identifier [= value] ...] ;

The type is one of Java’s atomic types, or
the name of a class or interface.

The identifier is the name of the variable.

• Dynamic Initialization

– Java allows variables to be initialized dynamically,
using any expression valid at the time the variable
is declared.

double a = 3.0, b = 4.0;

double c = Math.sqrt(a * a + b * b);

• The Scope and Lifetime of Variables

– A block defines a scope. Thus, each time you start
a new block, you are creating a new scope.

– It also determines the lifetime of those objects.

• In Java, the two major scopes are those
defined

– by a class and

– by a method

• Variables declared inside a scope are not
visible (that is, accessible) to code that is
defined outside that scope.

• Scopes can be nested.

• Objects declared in the outer scope will be
visible to code within the inner scope.
However, the reverse is not true.

class Scope {

public static void main(String args[]) {

int x; // known to all code within main

x = 10;

if(x == 10) { // start new scope

int y = 20; // known only to this block

// x and y both known here.

System.out.println("x and y: " + x + " " + y);

x = y * 2;

}

// y = 100; // Error! y not known here

// x is still known here.

System.out.println("x is " + x);

}

}

Type Conversion and Casting
• If the two types are compatible, then Java will

perform the conversion automatically.

– it is always possible to assign an int value to a long
variable.

• Not all types are compatible, and thus, not all
type conversions are implicitly allowed.

– there is no conversion defined from double to byte.

• To obtain a conversion between incompatible
types, you must use a cast, which performs an
explicit conversion between incompatible
types.

Java’s Automatic Conversions(Widening Conversion)

• An automatic type conversion will take place if
the following two conditions are met:

– The two types are compatible.

– The destination type is larger than the source type.

• For widening conversions,

– the numeric types, including integer and floating-
point types, are compatible with each other.

– the numeric types are not compatible with char or
boolean.

– char and boolean are not compatible with each
other.

Casting Incompatible Types (Narrowing Conversion)

• If an int value has to be assigned to a byte
variable, the type conversion will not be
performed automatically, because a byte is
smaller than an int. This kind of conversion is
sometimes called a narrowing conversion.

• A cast is simply an explicit type conversion.

• It has this general form:

(target-type) value

• Here the target-type specifies the desired type
to convert the specified value to.

Eg) int a;

byte b;

// ...

b = (byte) a;

• If the integer’s value is larger, than the range of a
byte, it will be reduced modulo byte’s
range(256).

• Truncation

– when a floating-point value is assigned to an integer
type, the fractional component is lost.

– if the size of the whole number component is too
large to fit into the target integer type, then that
value will be reduced modulo the target type’s range.

class Conversion {

public static void main(String args[]) {

byte b;

int i = 257;

double d = 323.142;

System.out.println("\nConversion of int to byte.");

b = (byte) i;

System.out.println("i and b " + i + " " + b);

System.out.println("\nConversion of double to int.");

i = (int) d;

System.out.println("d and i " + d + " " + i);

System.out.println("\nConversion of double to byte.");

b = (byte) d;

System.out.println("d and b " + d + " " + b);

}

}

Automatic Type Promotion in Expressions
• In an expression, the precision required of an

intermediate value will sometimes exceed the
range of either operand.

• Eg) byte a = 40;

byte b = 50;

byte c = 100;

int d = a * b / c;

• a * b easily exceeds the range of either of its byte
operands.

• Java automatically promotes each byte or short
operand to int when evaluating an expression.

• They can cause confusing compile-time errors also.

• Eg) byte b = 20;

b = b * 10; // Error! Cannot assign an int to a byte!

• In this case, the operands were automatically promoted
to int and the result is promoted to int, which cannot
be assigned to a byte without the use of a cast.

• In cases of such overflow, an explicit cast has to be
used.

• Eg) byte b=50;

b = (byte)(b * 2);

The Type Promotion Rules

• Java defines several type promotion rules that
apply to expressions.

– All byte and short values are promoted to int.

– if one operand is a long, the whole expression is
promoted to long.

– If one operand is a float, the entire expression is
promoted to float.

– If any of the operands is double, the result is
double.

class Promote {

public static void main(String args[]) {

byte b = 42;

char c = 'a';

short s = 1024;

int i = 50000;

float f = 5.67f;

double d = .1234;

double result = (f * b) + (i / c) - (d * s);

System.out.println((f * b) + " + " + (i / c) + " - " + (d * s));

System.out.println("result = " + result);

}

}

Operators

• Java provides a rich operator environment.

• Most of its operators can be divided into the
following four groups:

– arithmetic,

– bitwise,

– relational, and

– logical.

1. Arithmetic Operators

• The Basic Arithmetic Operators

– addition, subtraction, multiplication, and division

– +, -, *, /

• The Modulus Operator

– The modulus operator, %, returns the remainder of a
division operation.

• Arithmetic Assignment Operators

a = a + 4;

– In Java, the above stmt can be written as,

a += 4;

– Any statement of the form

var = var op expression;

Can be written as,

var op= expression;

• Increment and Decrement Operators

– ++, --

– The increment operator increases its operand by
one.

– The decrement operator decreases its operand by
one.

– Prefix form

• the operand is incremented or decremented before the
value is obtained for use in the expression.

y=++x;  x=x+1; y=x;

– Postfix form

• the previous value is obtained for use in the expression,
and then the operand is modified.

y=x++;  y=x; x=x++;

2. The Bitwise Operators
• Java defines several bitwise operators which can be applied to

the integer types, long, int, short, char, and byte.

• Bitwise operators manipulate the bits within an integer.

• All of the integer types are represented by binary
numbers of varying bit widths.

– eg) the byte value for 42 in binary is 00101010

• All of the integer types (except char) are signed
integers.

• This means that they can represent negative values as
well as positive ones.

• Java uses an encoding known as two’s complement,
which means that negative numbers are represented by
inverting (changing 1’s to 0’s and vice versa) all of the
bits in a value, then adding 1 to the result.

42  00101010

-42  11010101 + 1  11010110

• The reason Java uses two’s complement is
because of considering the issue of

ZERO CROSSING
• Assuming a byte value, zero is represented by

00000000. In one’s complement, simply inverting all of
the bits creates11111111, which creates negative zero.
The trouble is that negative zero is invalid in integer
math. This problem is solved by using two’s
complement to represent negative values. When using
two’s complement, 1 is added to the complement,
producing 100000000.

• This produces a 1 bit too far to the left to fit back into
the byte value, resulting in the desired behavior, where
–0 is the same as 0, and 11111111 is the encoding for
–1.

• The Bitwise Logical Operators

– The bitwise logical operators are &, |, ^, and ~

– Bitwise OR  |

– Bitwise AND  &

– Bitwise XOR  ^

– Bitwise NOT  ~

• The Left Shift (<<)

– shifts all of the bits in a value to the left a specified
number of times.

value << num

– For each shift left, the high-order bit is shifted out
(and lost), and a zero is brought in on the right.

– Left shifting a byte value

byte a = 64, b;

int i;

i = a << 2;

b = (byte) (a << 2);

System.out.println("Original value of a: " + a);

System.out.println("i and b: " + i + " " + b);

• Output

Original value of a: 64

i and b: 256 0

a= 64 (0100 0000)  promoted to int

 and left shifted twice

result, i = 256 (…1 0000 0000) -> int value

 casted to byte

b = 0 (0000 0000) -> higher order

bits discarded

• The Right Shift (>>)

– shifts all of the bits in a value to the right a specified
number of times.

value >> num

– eg) int a = 32;

a = a >> 2; // a now contains 8

binary form

0010 0011 (35)

>>2

0000 1000 (8)

• When you are shifting right, the top (leftmost) bits
exposed by the right shift are filled in with the
previous contents of the top bit.

• This is called sign extension and serves to preserve
the sign of negative numbers when you shift them
right.

11111000 (–8)

>>1

11111100 (–4)

• Sometimes it is not desirable to sign-extend values
when you are shifting them to the right.

• The Unsigned Right Shift

– In case of working with pixel-based values and
graphics, you will generally want to shift a zero into
the high-order bit no matter what its initial value
was. This is known as an unsigned shift.

– To accomplish this, Java’s unsigned, shift-right
operator, >>> is used, which always shifts zeros into
the high-order bit.

eg) int a = -1;

a = a >>> 24;

11111111 11111111 11111111 11111111 (–1)

>>>24

00000000 00000000 00000000 11111111 (255)

• Bitwise Operator Assignments

– All of the binary bitwise operators have a
shorthand form similar to that of the algebraic
operators, which combines the assignment with
the bitwise operation.

– eg) a = a >> 4;  a >>= 4;

a = a | b;  a |= b;

3.Relational Operators

• The relational operators determine the
relationship that one operand has to the other.

• The outcome of these operations is a boolean value.

int a = 4;

int b = 1;

boolean c = a < b;

• In this case, the result of a<b (which is false) is stored in c.

• In C/C++, these types of statements are very common:

int done;

// ...

if(!done) ... // Valid in C/C++

if(done) ... // but not valid in Java.

• In Java, these statements must be written like this:

if(done == 0)) ... // This is Java-style.

if(done != 0) ...

• In Java, true and false are nonnumeric values which do not
relate to zero or nonzero.

4.Boolean Logical Operators
• The Boolean logical operators operate only on boolean

operands.

• The logical Boolean operators, &, |, and ^, operate
on boolean values in the same way that they operate
on the bits of an integer.

• The logical ! operator inverts the Boolean state:

!true == false and !false == true.

• Short-Circuit Logical Operators

– Java provides two interesting Boolean operators,
&&, ||, that are secondary versions of the
Boolean AND and OR operators and are knows as
short-circuit logical operators.

– The OR operator results in true when A is true, no
matter what B is.

– Similarly, the AND operator results in false when A
is false, no matter what B is.

– If the short-circuit operators || and &&, rather
than | and &, then Java will not evaluate the right-
hand operand when the outcome of the
expression can be determined by the left operand
alone.

• Eg) if (denom != 0 && num / denom > 10)

– Since the short-circuit form of AND (&&) is used,
there is no risk of causing a run-time exception when
denom is zero.

– when using &&, the right hand operand is not
evaluated.

– If & is used, then the right hand operand will also be
evaluated and that causes a run-time exception when
denom==0.

• It is standard practice to use the short-circuit
AND(&&) and OR(||) in cases involving boolean
logic and the logical AND(&) and OR(|)
exclusively for bitwise operations.

• The Assignment Operator

– The assignment operator is the single equal sign, =

var = expression;

– The = is an operator that yields the value of the
right-hand expression.

• The ? Operator

– Java includes a special ternary (three-way)
operator that can replace certain types of if-then-
else statements.

– General form

expression1 ? expression2 : expression3

• Here, expression1 can be any expression that evaluates
to a boolean value.

• If expression1 is true, then expression2 is evaluated;
otherwise, expression3 is evaluated.

• Eg) ratio = denom == 0 ? 0 : num / denom;

– If denom equals zero, then the expression between the
question mark (?) and colon (:) is evaluated and used as the
value of the entire ? expression. (then ratio = 0)

– If denom does not equal zero, then the expression after the
colon is evaluated and ratio is assigned the resulting value.

• Operator Precedence

• Paranthesis are used to alter the precedence
of an operation.

eg) a >> (b+3)

 first adds 3 to b and then shifts right by that

result.

(a >> b) + 3

 first shift right by b positions and then add

3 to that result.

• The square brackets provide array indexing.

• The dot operator is used to dereference
objects.

Control Statements
• Java’s program control statements can be put into the

following categories:

– Selection

– Iteration

– Jump

• Selection statements allow your program to choose
different paths of execution based upon the outcome
of an expression or the state of a variable.

• Iteration statements enable program execution to
repeat one or more statements.

• Jump statements allow your program to execute in a
nonlinear fashion.

1. Java’s Selection Statements
• Java supports two selection statements: if and switch.

• if statement

if (condition) statement1;

else statement2;

• Most often, the expression used to control the if will
involve the relational operators.

• However, It is possible to control the if using a single
boolean variable.

boolean dataAvailable;

// ...

if (dataAvailable)

ProcessData();

else

waitForMoreData();

• Nested ifs

– A nested if is an if statement that is the target of
another if or else.

– When you nest ifs, an else statement always refers
to the nearest if statement that is within the same
block as the else.

if(i == 10)

{

if(j < 20)

a = b;

if(k > 100) // this if is

c = d;

else a = c; // associated with this else

}

else a = d; // this else refers to if(i == 10)

• The if-else-if Ladder

– based upon a sequence of nested ifs

if(condition)

statement;

else if(condition)

statement;

else if(condition)

statement;

...

else

statement;

– The if statements are executed from the top down.

– As soon as one of the conditions controlling the if is true, the
statement associated with that if is executed, and the rest of
the ladder is bypassed.

– If none of the conditions is true, then the final else statement
will be executed.

• switch statement
switch (expression)

{

case value1:

// statement sequence

break;

case value2:

// statement sequence

break;

...

case valueN:

// statement sequence

break;

default:

// default statement sequence

}

• Nested switch Statements

switch(count)

{

case 1:

switch(target) // nested switch

{

case 0:

System.out.println("target is zero");

break;

case 1: // no conflicts with outer switch

System.out.println("target is one");

break;

}

break;

case 2: // ...

• 3 important features of switch statement

– The switch differs from the if in that switch can
only test for equality, whereas if can evaluate any
type of Boolean expression.

– No two case constants in the same switch can
have identical values.

– A switch statement is usually more efficient than a
set of nested ifs.

2. Java’s Iteration Statements
• while statement

while(condition)

{

// body of loop

}

– The body of the loop will be executed as long as the
conditional expression is true.

– When condition becomes false, control passes to
the next line of code immediately following the
loop.

• do-while statement

do

{

// body of loop

} while (condition);

– Each iteration of the do-while loop first executes the
body of the loop and then evaluates the conditional
expression.

– If this expression is true, the loop will repeat.

– Otherwise, the loop terminates.

• for statement

for(initialization; condition; iteration)

{

// body

}

– When the loop first starts, the initialization portion of the
loop is executed.

– Next, condition is evaluated. This must be a Boolean
expression. If this expression is true, then the body of the
loop is executed. If it is false, the loop terminates.

– Next, the iteration portion of the loop is executed. The loop
then iterates, first evaluating the conditional expression, then
executing the body of the loop, and then executing the
iteration expression with each pass.

– This process repeats until the controlling expression is false.

• Declaring Loop Control Variables Inside the for
Loop

– it is possible to declare the variable inside the
initialization portion of the for.

for(int n=10; n>0; n--)

– When you declare a variable inside a for loop, the
scope of that variable ends when the for
statement does.

– When the loop control variable will not be
needed elsewhere, it can be declared inside the
for.

• Using the Comma

– if you want to include more than one statement in
the initialization and iteration portions of the for
loop, then the comma separator is used.

for(a=1, b=4; a<b; a++, b--)

– Each statement is separated from the next by a
comma.

• for Loop Variations

– The for loop supports a number of variations that
increase its power and applicability.

– One of the most common variations involves the
conditional expression.

– the condition controlling the for can be any
Boolean expression.

boolean done = false;

for(int i=1; !done; i++) {

// ...

if(interrupted()) done = true;

}

– In this example, the for loop continues to run until the
boolean variable done is set to true.

• Another for loop variation is that, in a for loop, either
the initialization or the iteration expression or both
may be absent.

int i;

boolean done = false;

i = 0;

for(; !done;) {

System.out.println("i is " + i);

if(i == 10) done = true;

i++;

}

• one more for loop variation is that, we can
intentionally create an infinite loop by leaving
all 3 parts of the for empty.

for(; ;) {

// ...

}

• This loop will run forever, and are called
infinite loops with special termination
requirements.

3.Java’s Jump Statements

• Java supports three jump statements:

– break,

– continue, and

– return.

• These statements transfer control to another
part of your program.

(another way in Java  Exception Handling)

• Using break

– In Java, the break statement has three uses.

• It terminates a statement sequence in a switch
statement.

• It can be used to exit a loop.

• It can be used as a “civilized” form of goto.

– Using break to Exit a Loop

• By using break, you can force immediate termination
of a loop, bypassing the conditional expression and any
remaining code in the body of the loop.

eg) if(i == 10) break; // terminate loop if i is 10

– Using break as a Form of Goto

• Java does not have a goto statement, because it provides
a way to branch in an arbitrary and unstructured manner.

• The goto can be useful when you are exiting from a
deeply nested set of loops.

• To handle such situations, Java defines an expanded form
of the break statement , called labeled break statement
by which you can break out of one or more blocks of
code.

• General form
break label;

• label is the name of a label that identifies a block of code.

• A label is any valid Java identifier followed by a colon.

• When this form of break executes, control is transferred
out of the named block of code.

• The labeled block of code must enclose the break
statement, but it does not need to be the immediately
enclosing block.

class Break

{

public static void main(String args[])

{

boolean t = true;

first:

{

second:

{

third:

{

System.out.println("Before the break.");

if(t) break second; // break out of second
block

System.out.println("This won't execute");

}

System.out.println("This won't execute");

}

System.out.println("This is after second block.");

}

}

}

• Using continue

– To force an early iteration of a loop.

– In while and do-while loops, a continue
statement causes control to be transferred
directly to the conditional expression that
controls the loop.

– As with the break statement, continue may
specify a label to describe which enclosing loop
to continue.

class ContinueLabel {

public static void main(String args[]) {

outer: for (int i=0; i<10; i++)

{

for(int j=0; j<10; j++)

{

if(j > i)

{

System.out.println();

continue outer;

}

System.out.print(" " + (i * j));

}

}

System.out.println();

}

}

• return statement

– The return statement is used to explicitly return
from a method.

– It causes program control to transfer back to the
caller of the method.

– The return statement immediately terminates
the method in which it is executed.

class Return

{

public static void main(String args[])

{

boolean t = true;

System.out.println("Before the return.");

if(t) return; // return to caller

System.out.println("This won't execute.");

}

}

The Java Keywords
• There are 49 reserved keywords currently

defined in the Java language.

• These keywords cannot be used as names for
a variable, class, or method.

The Java Class Libraries
• The java built-in methods println() and print()

are members of the System class, which is a
class predefined by java that is automatically
included in your programs.

• The Java environment relies on several built-in
class libraries that contain many built-in
methods that provide support for such things
as I/O, string handling, networking, and
graphics.

• Java as a totality is a combination of the Java
language itself, plus its standard classes.

Arrays
• An array is a group of like-typed variables that are

referred to by a common name.

• A specific element in an array is accessed by its index.

• One-Dimensional Arrays

– A one-dimensional array is, essentially, a list of like-typed
variables.

– General form

type var-name[];

– type declares the base type of the array.

– The base type determines the data type of each element that
comprises the array.

– Eg) int month_days[];

• The value of month_days is set to null, which represents
an array with no value.

• To link month_days with an actual, physical array of
integers, you must allocate one using new and assign it
to month_days.

• new is a special operator that allocates memory.

• General form

array-var = new type[size];

• To use new to allocate an array, you must specify the
type and number of elements to allocate.

• Eg) month_days=new int[12];

• Obtaining an array is a two-step process.

– Declare a variable of the desired array type.

– allocate the memory that will hold the array, using
new, and assign it to the array variable.

• In Java all arrays are dynamically allocated.

• Once you have allocated an array, you can
access a specific element in the array by
specifying its index within square brackets.

month_days[1] = 28;

• All array indexes start at zero.

class Array {

public static void main(String args[]) {

String colors[];

colors=new String[7];

colors*0+=“violet”;

colors*1+=“Indigo”;

colors*2+=“Blue”;

colors*3+=“Green”;

colors*4+=“Yellow”;

colors*5+=“Orange”;

colors*6+=“Red”;

for(int i=0;i<7;i++){

System.out.println(“Rainbow Colours:”+colors*i+);

}

}

}

• Arrays can be initialized when they are declared.

• An array initializer is a list of comma-separated
expressions surrounded by curly braces.

• The commas separate the values of the array elements.

• Eg)

int month_days[] = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };

• The Java run-time system will check to be sure that all
array indexes are in the correct range.

• If elements outside the range of an array were tried to
be accessed, then a run-time error will be caused.

• C/C++ provide no run-time boundary checks.

Multidimensional Arrays

• In Java, multidimensional arrays are actually
arrays of arrays.

• To declare a multidimensional array variable,
specify each additional index using another
set of square brackets.

int twoD[][] = new int[4][5];

